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ABSTRACT

Aim Ecological niche modelling can provide valuable insight into species’ envi-

ronmental preferences and aid the identification of key habitats for populations

of conservation concern. Here, we integrate biologging, satellite remote-sensing

and ensemble ecological niche models (EENMs) to identify predictable foraging

habitats for a globally important population of the grey-headed albatross

(GHA) Thalassarche chrysostoma.

Location Bird Island, South Georgia; Southern Atlantic Ocean.

Methods GPS and geolocation-immersion loggers were used to track at-sea

movements and activity patterns of GHA over two breeding seasons (n = 55;

brood-guard). Immersion frequency (landings per 10-min interval) was used to

define foraging events. EENM combining Generalized Additive Models (GAM),

MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified

the biophysical conditions characterizing the locations of foraging events, using

time-matched oceanographic predictors (Sea Surface Temperature, SST; chloro-

phyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was

assessed through iterative cross-validation and extrapolative performance

through cross-validation among years.

Results Predictable foraging habitats identified by EENM spanned neritic

(<500 m), shelf break and oceanic waters, coinciding with a set of persistent

biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–
13 °C), elevated primary productivity (chl-a > 0.5 mg m�3) and frequent man-

ifestation of mesoscale thermal fronts. Our results confirm previous indications

that GHA exploit enhanced foraging opportunities associated with frontal sys-

tems and objectively identify the APFZ as a region of high foraging habitat

suitability. Moreover, at the spatial and temporal scales investigated here, the

performance of multi-model ensembles was superior to that of single-algorithm

models, and cross-validation among years indicated reasonable extrapolative

performance.

Main conclusions EENM techniques are useful for integrating the predictions

of several single-algorithm models, reducing potential bias and increasing confi-

dence in predictions. Our analysis highlights the value of EENM for use with

movement data in identifying at-sea habitats of wide-ranging marine predators,

with clear implications for conservation and management.
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INTRODUCTION

Ecological niche modelling (also referred to as species-habitat,

predictive habitat, habitat-based and species distribution mod-

elling) provides a framework for understanding species’ dis-

tributions as a function of their environmental preferences.

Understanding the mechanisms that underlie environmental

preference is particularly challenging for wide-ranging species

with complex life histories, especially in the marine realm

where conditions are highly dynamic. Recent efforts to inte-

grate animal tracking (‘biologging’), satellite remote-sensing

and ecological niche modelling have generated valuable

insights into the interactions between wide-ranging marine

species and their oceanic environment (e.g. Howell et al.,

2015; Raymond et al., 2015; Torres et al., 2015). However,

most studies utilize a single modelling framework with its

specific biases, reducing the comparability of results and

potentially limiting predictive capacity. An alternative is to

adopt an ensemble ecological niche modelling approach

(EENM; Ara�ujo & New, 2007), which combines the output

of multiple algorithms into one predictive surface and has

been used successfully for identifying key habitats of marine

predators, including sea turtles (Pikesley et al., 2013) and

seabirds (Oppel et al., 2012).

Predicting the locations of suitable foraging habitats for

wide-ranging pelagic species such as procellariiform seabirds

(albatrosses, petrels and shearwaters) is non-trivial, given the

complex and scale-dependent interactions between oceano-

graphic processes and prey field dynamics, and the diverse

aspects of bird physiology, energetics, reproductive and other

constraints that govern foraging behaviour. The spatial ecol-

ogy of pelagic seabirds appears to be influenced by processes

both extrinsic and intrinsic to each individual. For example,

habitat preferences of Southern Ocean seabirds vary among

species (Commins et al., 2014), populations (Nel et al., 2001;

Louzao et al., 2011; Joiris & Dochy, 2013) and individuals

(Phillips et al., 2006; Patrick & Weimerskirch, 2014);

between sexes (Phillips et al., 2004); between life history

stages (Phillips et al., 2005); through the annual cycle (Phil-

lips et al., 2006; Wakefield et al., 2011); and in response to

changes in oceanographic conditions (Xavier et al., 2013).

Ecological niche modelling must be conducted with an

awareness of the multifaceted influences on habitat selection

if it is to be informative for identifying and managing prior-

ity areas for conservation (Lascelles et al., 2012).

The energetic demands of reproduction are known to

strongly influence habitat selection by pelagic seabirds during

breeding phases. The constraints of incubation and chick

provisioning impose a central place foraging mode, as trips

are restricted to waters within an accessible range of the col-

ony (Weimerskirch et al., 1993). Individuals face trade-offs

between the costs of flight and the necessity for reliable

acquisition of prey of sufficient quality to meet the demands

of chick provisioning in addition to their own energetic

requirements, including for self-maintenance (Weimerskirch

et al., 1997). These constraints are particularly pronounced

during the brood-guard period, when chicks require contin-

ual attendance by a parent to avoid chilling, are at their most

vulnerable to predation and have a small stomach volume so

they require frequent meals (Weimerskirch et al., 1988;

Xavier et al., 2003; Wakefield et al., 2011).

Breeding success is therefore conditional upon the abilities

of each bird to predict the locations of suitable foraging

habitats within a commutable distance of the colony. The

oceanic seascapes over which pelagic seabirds search for food

are highly heterogeneous (Fauchald et al., 2000; Weimer-

skirch, 2007). Suitable foraging habitats that include prey of

sufficient number and quality accessible within the diving

capabilities of the species are formed by stochastic biophysi-

cal processes; hence, the locations of exploitable prey aggre-

gations are usually unpredictable at fine spatial scales (Hazen

et al., 2013). However, there is evidence to suggest that some

species, particularly albatrosses, may target or track regions

in which the availability of prey resources is related to persis-

tent oceanographic conditions and hence predictable over

broad- to mesoscales, thus optimizing foraging success (Piatt

et al., 2006; Weimerskirch, 2007; Kappes et al., 2010; Louzao

et al., 2011).

Grey-headed albatrosses (GHA) Thalassarche chrysostoma,

in common with many Southern Ocean predators, have been

shown to exploit predictable foraging opportunities gener-

ated through biophysical coupling along ocean fronts – phys-

ical interfaces between contrasting water masses (Belkin

et al., 2009; Bost et al., 2009). The Antarctic Polar Frontal

Zone (APFZ), an extensive, dynamic region that marks the

northern boundary of the Antarctic Circumpolar Current

(ACC), is known to be an important feature for seabirds and

marine mammals in this sector of the Southern Ocean (Catry

et al., 2004; Wakefield et al., 2011; Scheffer et al., 2012).

Within the broadscale APFZ, intense oceanographic dynam-

ics lead to the generation of chaotic eddies and the manifes-

tation of mesoscale (10s-100s of kilometres) or submesoscale

(~1 km) thermohaline fronts. Aggregations of prey, such as

the mesopelagic fish and cephalopods often targeted by

GHA, can be concentrated within this zone, both through

processes of mechanical entrainment and bottom-up forcing

(Rodhouse & White, 1995; Reid et al., 1996; Catry et al.,

2004; Rodhouse & Boyle, 2010). Areas of frequent or persis-

tent frontal activity, such as the APFZ, may therefore consti-

tute predictable foraging habitats for regional populations of

wide-ranging predators.

Here, a novel application of EENM is developed, using

high-resolution data tracking the movements and activity

patterns of GHA from the largest global colony, to identify

persistent oceanographic conditions that characterize forag-

ing habitats within the area accessible to breeding birds. We

use a suite of remotely sensed oceanographic data, including

the first regional application of a thermal front frequency

index, in an iterative presence–availability model framework,

with the following aims: (i) to identify the biophysical condi-

tions that characterize the locations of observed foraging

events; (ii) to model the spatial distribution of predictable
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foraging habitats, (iii) to explore the comparative utility of

EENM and single-algorithm models in the context of using

movement data to define foraging habitats of wide-ranging

species over broad- to mesoscales and (iv) to evaluate the

extrapolative performance of EENM through time.

METHODS

Device deployment

Birds were tracked from Colony B at Bird Island, South

Georgia (54°000S 38°030W) over December–January of two

austral breeding seasons, during the brood-guard phase (total

n = 55 birds; n = 25 in 2009/2010; n = 30 in 2011/2012;

Fig. 1). GPS loggers used were i-gotU (MobileAction Tech-

nology; http://www.i-gotu.com; 25 g mass), earth & Ocean

Technology (e&O-Tec) MiniGPSlog (25 g) or e&O-Tec

MicroGPSlog (10 g) and were attached using Tesa� marine

cloth tape (total 5 g) to mantle feathers. Devices were pro-

grammed to record fixes at 10- or 15-min intervals and were

recovered after one complete foraging trip. Birds were also

equipped with geolocation-immersion loggers (British

Antarctic Survey; Mk 13; ~1.5 g mass), attached to a stan-

dard British Trust for Ornithology metal or plastic ring.

Birds were restrained on the nest only during device deploy-

ment, and handling time during deployment and retrieval

was minimized (5–10 min).

Behavioural classification

Landing rate (number of landings per 10-min interval)

derived from the immersion data was used to identify forag-

ing bouts (following Dias et al., 2011). Take-off from the

water surface is energetically costly for albatrosses, so we

assumed that immersion events indicated prey capture

attempts (following Wakefield et al., 2011). Empirical evi-

dence from previous work on this population shows that

birds frequently catch prey in rapid directed flight without

any obvious area-restricted search (ARS) behaviour (Catry

et al., 2004), so we used landing rate in preference to identi-

fying ARS.

Locations of immersion events were derived through tem-

poral matching of GPS and immersion data. As birds rest on

the water surface overnight (Catry et al., 2004), only locations

recorded in daylight hours were used (bounded by civil dawn

and dusk; solar zenith of �6°). All locations within a 50 km

radius of the colony were excluded from analysis to remove

rafting behaviour. GPS tracks were interpolated to regular 10-

min intervals. Landing rate was derived using a sliding window

that summed the immersion events in the 10-min preceding

each GPS location. Interpolated point locations along each

track were then classified as either foraging – associated with at

least one immersion event– or transit.

The study area was defined as the region enclosed by a

radius corresponding to the whole data set absolute maxi-

mum displacement from the colony (1185 km). To resolve

the spatial distribution of foraging events, a two-dimensional

regular grid of the study area (71°S to 32°S; 55°W to 21°W)

was created at 0.5° resolution. Grid cells in which foraging

events were recorded were designated as 1, and grid cells

that contained transit locations, or no bird presence, were

designated as 0. All analyses were conducted in R version

3.1.

Oceanographic data

Remotely sensed oceanographic data were obtained for a

matching time span (late December–end January) for each

45°W 40°W 35°W

60°S

55°S

50°S

45°S

(a)

50°W 45°W 40°W 35°W
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Figure 1 GPS tracking of grey-headed albatrosses (GHA) from Bird Island, South Georgia. Trips used to identify the spatial

distribution of foraging events during the (a) 2009/2010 (n = 25) and (b) 2011/2012 (n = 30) breeding seasons (brood-guard phase).

Birds for which sexes are known are highlighted in orange for female (n = 3, 2009/2010, n = 2, 2011/2012) and green for male (n = 5,

2009/2010; n = 3, 2011/2012).
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tracking period (2009/2010; 2011/2012). Daily NASA Multi-

Sensor Merged Ultra-High Resolution (MUR) Sea Surface

Temperature (SST) imagery was downloaded via OpenDAP,

and daily chlorophyll-a (chl-a) imagery was processed from

MODIS-Aqua data; both were mapped to the study area in

geographic projection at 1.2-km resolution. Daily images

were used to generate monthly median SST and chl-a (log

scaling) composites. Bathymetric data were obtained for a

matching spatial extent from the General Bathymetric

Chart of the Oceans (GEBCO_08 grid; http://www/gebco.net)

and used to derive depth at 30 arc second resolution.

Thermal composite front maps (Miller, 2009) were

generated from MUR SST data, over rolling 7-day periods

spanning the tracking period. Thermal fronts were detected

in each MUR SST scene using single-image edge detection

(SIED; Cayula & Cornillon, 1992; front detection thresh-

old = 0.4 °C). Successive 7-day composites were used to pre-

pare monthly front frequency (TFreq) layers, which quantify

the frequency with which a front is detected in each pixel as

a ratio of the number of positive detections to the number

of cloud-free observations. All environmental data layers

were standardized at 0.5 degree resolution through bilinear

interpolation (‘raster’ package for R; Hijmans & Etten, 2012;

Fig. 2). Oceanographic data layers were selected on the basis

of availability, coverage and previously demonstrated

influence on habitat selection by GHA and sympatric seabird

20°W

0

1000

2000

3000

4000

5000

6000

7000

8000

m

0

5

10

15

20

0

10

20

30

40

50

55°W
70°S

32°S

N

°C

%

mgm-3

APFZ APFZ

(a) (d)

(b) (e)

(c) (f)

(g)

Figure 2 Environmental data layers for

brood-guard period (end December–end
January). Dynamic variables, (a) Sea

Surface Temperature (SST, °C; monthly

median composite) for 2009/2010, (b)

chlorophyll-a (chl-a, mg m�3; monthly

median composite; log transformed), for

2009/2010 and (c) thermal front

frequency (TFreq, % time; 0.4°C front

detection threshold; monthly synoptic

composite) for 2009/2010. (d–f) Dynamic

variables for 2011/2012. (g) GEBCO

Depth (30 arc-second resolution).
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species (e.g. Xavier et al., 2003; Phillips et al., 2006; Wake-

field et al., 2011; Ballard et al., 2012).

Ensemble ecological niche modelling (EENM)

Previous work concluded that an ensemble approach is

preferable to the use of single-algorithm models for predict-

ing seabird habitat affinities (Oppel et al., 2012). However,

the technique has not, to our knowledge, yet been used to

identify predictable foraging habitats using movement data.

We used EENM with movement data to identify the bio-

physical conditions characterizing the locations of foraging

events. Ecological niche models were fitted using the

Generalized Additive Models (GAM), Maximum Entropy

(MaxEnt), Random Forest (RF) and Boosted Regression Tree

(BRT) algorithms within the biomod2 package for R

(Thuiller et al., 2009, 2014).

The package ‘biomod2’ uses a presence–availability frame-

work to model habitat suitability. As grid cells in which

no foraging events were detected cannot be classified as true

absences, control locations (pseudo-absences) were iteratively

resampled from within the study area. Five iterations of

1000 randomly selected control locations were used over

successive model runs (Barbet-Massin, 2012). Each model

run involved 10-fold cross-validation, with data randomly

apportioned to a 75%/25% split for model calibration and

testing phases.

Relative importance of environmental variables was deter-

mined using the built-in method in biomod2, which over-

comes difficulties associated with comparing model-specific

outcomes through a randomization procedure (Thuiller

et al., 2009, 2014). This protocol fits a Pearson correlation

between fitted values and predictions, where each variable

has been randomly permutated. If the two are correlated, the

variable is considered of little importance. This procedure

was repeated 10 times for each variable within each model

run. The relative importance of each environmental variable

(relative importance of the contribution to the model coeffi-

cients, RICC) was then scaled by subtracting the mean corre-

lation coefficient from 1. The overall explanatory power of

the environmental variables was derived using the mean-of-

means of standardized variable importance over all iterations

per algorithm (Table S1).

Outputs of each single-algorithm model were evaluated

over both model calibration and testing data sets for each

model iteration. A triad of performance metrics (AUC, TSS

and Boyce Index) was generated for each iteration per algo-

rithm, and we calculated the mean of each metric over each

iteration of control locations and mean of each metric over

all models fit per algorithm (n = 50; 10-fold cross-validation

for each of 5 iterations of control locations; Tables S3 and

S4). Only those with a True Skill Statistic (TSS) equal to or

greater than 0.7 were included in the final ensemble. Ensem-

ble projections were created using a weighted average across

all single-algorithm models, based on TSS, and accounting

for differences in algorithm performance. EENM projections

were based on a habitat suitability index (HSI), scaled

between 0 and 1, where 1 represents greatest suitability.

Resultant EENMs were then evaluated, using AUC, TSS

and Boyce Index (Boyce et al., 2002; Hirzel et al., 2006). We

calculated all performance metrics for each EENM fitted to

the full data set from each year. AUC and TSS were calcu-

lated using in-built biomod2 functionality. Boyce Index was

calculated through projection of each model on to the full

data set for each year (‘ecospat’ package for R; Broenniman

et al., 2014) to obtain a value comparing model predictions

of HSI with the input presence data set in each case.

EENM extrapolative performance

EENM extrapolative performance was assessed through

cross-validation between the two years for which we had

data. We projected each model on to the combined synoptic

environmental data surfaces for the contrasting year to that

upon which the model was constructed. Performance metrics

(AUC, TSS and Boyce Index) were calculated for each of

these projected models. Spatial concordance between predic-

tions of models extrapolated across time and year-specific

models was quantitatively compared using Mantel tests (ade4

package for R; Dray & Dufour, 2007).

RESULTS

Foraging trips

Maximum displacement from the colony ranged between

153 km and 1185 km, with a mean � SD of 744 � 249 km.

Trip duration ranged between 0.6 and 6.1 days, with a mean

of 2.9 � 1.3 days. All trips involved at least one foraging

event (based on landing rate derived from the immersion

data), with a mean of 6.1 � 3.7 foraging events per trip

(range 2–17). Sex was available for a small subsample of

tracked birds (n = 8, 2009/2010; n = 5, 2011/2012), in which

no differences in foraging trips between sexes were detected

(Fig. 1). Given the small sample of known sex, sex effects

were not included in further population-level analyses.

Predictable foraging habitats

Median SST and chl-a concentration were important con-

tributory variables to EENMs constructed for both years of

the study, suggesting these biophysical variables influence

albatross foraging habitat selection over the scales investi-

gated by our models (Table 1). However, the overall

explanatory contribution of chl-a to the 2011/2012 EENM

(RICC = 0.150) was lower than its contribution to the 2009/

2010 EENM (RICC = 0.585), and the inverse was observed

for the contribution of SST to each EENM (RICC, 2009/

2010 = 0.577; RICC, 2011/2012 = 0.744). The relative contri-

butions of water depth and the frequency of mesoscale ther-

mal front manifestation (TFreq) to the explanatory

capabilities of the EENM were lower than that of SST and
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chl-a across both years, although TFreq and depth were more

important to the 2011/2012 model set (RICC, TFreq = 0.155,

RICC, depth = 0.100) than for 2009/2010 (RICC,

TFreq = 0.037; RICC depth = 0.086).

Spatial predictions of EENMs identified suitable foraging

conditions across neritic (<500 m depth), shelf break and

oceanic regions, reflecting the variety of foraging locations

used by birds tracked in both breeding seasons (Fig. 3).

EENM-derived spatial predictions of habitat suitability were

similar in extent, distribution and scaling among years

(Fig. 3a,b). Regions of high habitat suitability were associated

with particular SST ranges (3–8 °C, 12–13 °C) and productive

regions (median chl-a > 0.5 mg m�3). The APFZ (Fig. 2e,f)

was also identified as an area highly suitable for foraging in

both years (Fig. 3), although this zone lies at the extremes of

the area accessible to birds during brood-guard (Fig. 1).

EENM vs. single-algorithm models

Model predictions

The ranking of environmental variables (mean over 50 runs

per algorithm) was broadly comparable among single-algo-

rithm models, although some variability was evident

(Table 1). For example, ranking of variable importance was

similar among GAM, RF and BRT models in both years, but

notably different for MaxEnt models. EENM rankings

smoothed over the algorithm-specific variability. However,

explanatory contributions of environmental variables were

ranked differently by year-specific EENMs (Table 1).

Model response curves for each variable were comparable

among algorithms. GAM, RF and BRT in particular gener-

ated model sets with very similar response curves for SST,

TFreq and depth, although less consistency among algorithms

is evident in chl-a response curves (Fig. 4). MaxEnt models

were subject to greater inconsistency in predicted responses

(Figs S1–S3).
Similarly, spatial predictions of models fitted using the

GAM, RF and BRT algorithms were comparable in the extent

and distribution of predicted high suitability habitats, and in

the scaling of the habitat suitability index (HSI) in these

regions (Fig. 5). MaxEnt models, however, generated more

spatially restricted predictions with overall lower HSI

throughout the accessible area. For these reasons, we did not

include MaxEnt in the final EENMs. The distribution, extent

and scaling of suitable habitats identified in EENM predic-

tions integrated the predictions of GAM, RF and BRT,

smoothing over algorithm-specific variation (Fig. 3). EENM

Table 1 Variable importance (mean over all model sets per algorithm), scaled as relative importance of contribution to model

coefficients (RICC), from 0 to 1. Variable importance rankings in brackets

Variable importance, 2009/2010 Variable importance, 2011/2012

SST Chl-a TFreq Depth SST Chl-a TFreq Depth

GAM 0.61396 (1) 0.4570 (2) 0.06512 (4) 0.17284 (3) 0.92174 (1) 0.09860 (3) 0.07752 (4) 0.16574 (2)

MaxEnt 0.45498 (2) 0.48992 (1) 0.06060 (4) 0.12338 (3) 0.55658 (1) 0.21478 (3) 0.31830 (2) 0.18928 (4)

RF 0.46120 (2) 0.52012 (1) 0.08466 (4) 0.16598 (3) 0.51792 (1) 0.27812 (2) 0.24914 (3) 0.20358 (4)

BRT 0.5644 (1) 0.56014 (2) 0.01672 (4) 0.05316 (3) 0.59350 (1) 0.29776 (2) 0.22872 (3) 0.0805 (4)

EENM 0.577 (2) 0.585 (1) 0.037 (4) 0.086 (3) 0.744 (1) 0.150 (3) 0.155 (2) 0.100 (4)

60ºS

55ºS

50ºS

45ºS

40ºS
(a) (b)

50ºW 40ºW 30ºW

(c) (d)

0.0

0.5

1.0

Figure 3 Spatial predictions of

ensemble ecological niche models

(EENMs) and cross-validation among

years. Spatial predictions of final EENM

(weighted mean, removal of MaxEnt

predictions) for (a) 2009/2010 and (b)

2011/2012. Cross-validation of (c) 2009/

2010 EENM onto 2011/2012

environmental conditions and (d) 2011/

2012 EENM onto 2009/2010

environmental conditions. Spatial

predictions displayed as habitat

suitability index (HSI) per grid cell,

scaled from 0 to 1. Greater similarity

between (a, b) and (c, d) indicates better

EENM transferability among years.
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predictions showed a strong spatial concordance in the loca-

tion and extent of suitable habitats identified in each year

(Fig. 3; HSI, Mantel r = 0.9599).

Model performance

EENMs were highlighted by AUC and Boyce Index as the

best performing models in comparison with all single-algo-

rithm models, in both years. However, the True Skill Statistic

(TSS) selected Random Forest (RF) as the best performing in

both years (Table 2).

Evaluation metrics indicated similar performance of

single-algorithm models across model sets (variance,

AUC = 0.0002; TSS = 0.001; Boyce Index = 0.002; Table 2)

and for each of these single-algorithm models among years

(correlation, AUC r = 0.999; TSS = 0.935; Boyce

Index = 0.884; Table 2). AUC and TSS ranked single-algo-

rithm models in a similar order in both years (e.g.

AUC = RF, BRT, GAM, MaxEnt; Table 2), but there was lit-

tle concordance between rankings of single-algorithm models

among the three performance metrics used (AUC, TSS and

Boyce Index). The weighted mean EENM including predic-

tions of GAM, RF and BRT models was retained as the final

model for each year.

EENM extrapolative performance

EENMs extrapolated across years to predict suitable foraging

habitats over contrasting mesoscale oceanographic conditions

performed well according to AUC and Boyce Index scores.

All model performance metrics (AUC, TSS and Boyce Index)

reveal the extrapolative performance of the 2011/2012 EENM

to be superior to that of the 2009/2010 EENM.

Spatial predictions of EENMs extrapolated across years

were broadly comparable to the predictions of each year-spe-

cific EENM, highlighting the suitable foraging conditions

located to the north and west of the colony. Extrapolation of

the 2011/2012 EENM to the 2009/2010 combined environ-

mental data surface exhibited strong similarity with the

2009/2010 EENM (HSI, Mantel r = 0.9437), but extrapola-

tion of the 2009/2010 EENM on to 2011/2012 conditions

predicted more spatially restricted regions of high habitat

suitability than those predicted by the year-specific model

(HSI, Mantel r = 0.8740; Fig. 3). The proportion of the area

accessible to the population during this breeding phase in

which suitable foraging habitats were predicted to occur was

comparable among years (Fig. 6).

DISCUSSION

Predictable foraging habitats for the grey-headed albatross

population breeding at Bird Island, South Georgia, appear to

coincide with a set of persistent biophysical conditions. Over

the spatial and temporal scales investigated by our models,

EENM performed better than single-algorithm models in

predicting the distribution of observed foraging events. These

insights highlight the potential of EENM as a tool for use

with movement data in identifying at-sea habitats of marine

predator populations of conservation concern and for guid-

ing mitigation of spatially explicit anthropogenic threats in

high suitability habitats.

Predictable foraging habitats

Our ensemble ecological niche models (EENMs) highlight

SST and median surface chl-a concentration (monthly synop-

tic fields) as important determinants of habitat suitability for

foraging grey-headed albatrosses during brood-guard. SST has

been found to be a useful predictor of habitat preference for

other albatross species at South Georgia and elsewhere (Awk-

erman et al., 2005; Kappes et al., 2010; Wakefield et al., 2011;

Deppe et al., 2014). GHA also appeared to respond to the fre-

quency of mesoscale thermal front manifestation (TFreq),

which characterized the APFZ, and to water depth, although

these predictors had a lesser influence in models.

SST is a proxy for the spatial structuring of biophysical

conditions over the vast ranges utilized by these ocean-wan-

dering seabirds. Different foraging guilds of pelagic predators

exploit prey types that associate with particular temperature

regimes (Commins et al., 2014). GHA are known to seize

prey from the ocean surface (<2–3 m depth; Huin & Prince,

1997) and to feed predominantly on ommastrephid squid,

including Martialia hyadesi, crustaceans, including Antarctic

krill Euphausia superba and, less commonly, lamprey Geotria

australis, mesopelagic fish and gelatinous zooplankton (Rod-

house et al., 1990; Reid et al., 1996; Xavier et al., 2003; Catry

et al., 2004). Although the diet of tracked birds was not deter-

mined, their distribution was broadly comparable with previ-

ous years when all these prey types were recorded (Xavier
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Figure 4 Model Response Curves for SST in 2011/2012 model

sets, per algorithm, (a) GAM, (b) RF, (c) BRT, (d) MaxEnt.
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Figure 5 Spatial predictions of

ecological niche models per algorithm,

(a) Generalized Additive Models, GAM,

2009–2010 (b) GAM, 2011/2012; (c)

Maximum Entropy, MaxEnt, 2009/2010,

(d) 2011/2012; (e) Random Forest, 2009/

2010, (f) 2011/2012; (g) Boosted

Regression Trees, 2009/2010, (h) 2011/

2012. Spatial predictions displayed as

habitat suitability index (HSI) per grid

cell, scaled from 0 to 1 (mean over all

model runs, n = 50 per algorithm).

Table 2 Model performance metrics (mean over all model sets per algorithm). Area under receiver operating characteristic curve

(AUC) scaled 0 to 1; True Skill Statistic (TSS) scaled 0 to 1; and Boyce Index scaled �1 to +1. Highest scoring model for each

performance metric highlighted in bold. EENM rows have metrics for final EENM, without MaxEnt (black), and EENM with MaxEnt

(grey). Performance rankings per metric in brackets

Model Set

Model evaluation, 2009/2010 Model evaluation, 2011/2012

AUC TSS Boyce index AUC TSS Boyce index

GAM 0.9421 (3) 0.8237 (2) 0.9213 (2) 0.9372 (3) 0.7835 (3) 0.8943 (3)

MaxEnt 0.9276 (4) 0.7740 (4) 0.9300 (1) 0.9101 (4) 0.7184 (4) 0.9051 (1)

RF 0.9523 (1) 0.8277 (1) 0.8329 (3) 0.9563 (1) 0.8283 (1) 0.8998 (2)

BRT 0.9444 (2) 0.8176 (3) 0.7130 (4) 0.9418 (2) 0.7843 (2) 0.8615 (4)

EENM 0.9547 0.7914 0.9512 0.9610 0.7871 0.9656

0.9479 0.7514 0.8990 0.9591 0.7791 0.9626

EENM extrapolation 0.9107 0.5194 0.8536 0.9281 0.6630 0.9358

0.9038 0.5188 0.7138 0.9267 0.6208 0.9540
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et al., 2003; Catry et al., 2004). This suggests that the environ-

mental conditions identified through this modelling proce-

dure reflect the key habitats and main prey that are targeted

by grey-headed albatrosses at South Georgia, which represent

c. 50% of the global breeding population (ACAP, 2009).

Chl-a was also identified as a predictor of the spatial dis-

tribution of foraging events. Overall, foraging activity was

more likely in productive regions. Chl-a concentrations

(monthly median) were highest on-shelf, with peak values

recorded to the south-west of the colony. The APFZ was not

characterized by elevated productivity over the spatial and

temporal scales investigated in this model. Birds foraging in

productive shelf waters around South Georgia are likely to

be targeting Antarctic krill and icefish Champsocephalus gun-

nari, which are more closely tied to bottom-up forcing

mechanisms than the squid and mesopelagic fish found in

the APFZ (Wakefield et al., 2012).

High TFreq values and narrow SST contours characterize

the APFZ, which was identified by the EENM as a region of

high habitat suitability for GHA. Plunge-diving GHA have

been observed in association with large aggregations of M.

hyadesi at the ocean surface within the APFZ (Rodhouse &

Boyle, 2010). Although few foraging events were observed in

the APFZ during the tracking period, it is likely that those

birds foraging in the APFZ were targeting ommastrephid

squid. The APFZ lies at the northernmost extreme of the

observed foraging range during brood-guard, which might

suggest that reproductive constraints influenced the strength

of the association with this region. Regardless, the high spa-

tial overlap between the APFZ and the distribution of GHA

during other breeding stages and in the non-breeding period

(Phillips et al., 2004; Croxall et al., 2005) suggest it is a key

foraging area for this species, year-round.

In previous studies in the region, the spatial extent of the

APFZ has been estimated using historical or averaged data,

which did not match the temporal resolution of animal

movement data. For example, Xavier et al. (2003) used the

position of the polar front (PF) derived from survey data in

1997 to investigate habitat preference of birds tracked in

2000. However, the APFZ is a highly dynamic feature, char-

acterized by intense mesoscale variability, and the PF can

vary in position by as much as 100 km in 10 days (Trathan

et al., 1997). Detecting fronts in a temporally averaged SST

composite can also mask the dynamic nature of these fea-

tures. The TFreq index, used here for the first time in the

Southern Ocean, is an objective, synoptic product that

enables incorporation of mesoscale oceanographic dynamics

in broad-scale ecological niche models (Scales et al., 2014).

In addition to the selection of environmental data layers,

analytical scale is a key aspect of the construction of ecologi-

cal niche models. Matching the spatial resolution of remotely

sensed data sets with the scales over which animals locate

key foraging areas remains a major challenge in habitat mod-

elling (Storch, 2002; Luoto et al., 2007), particularly in the

marine realm (Ara�ujo & Guisan, 2006; Hirzel et al., 2006).

In our study, environmental data layers were interpolated to

a standard 0.5 degree grid resolution, which was deemed

appropriate given the extent of the area over which tracked

birds roamed. To ensure scale match of the research ques-

tion, response and environmental data sets, we also restricted

temporal averaging of environmental data layers to one

month, matching the duration of the brood-guard phase for

the focal population.

EENM vs. single-algorithm models

Model predictions

Single-algorithm ecological niche models fitted on the same

data set can perform differently and generate contrasting pre-

dictions (Guisan & Zimmerman, 2000; Thibaud et al., 2014).

Single-algorithm models used here ranked the relative

importance of environmental variables differently in both

years, yet overall concordance was observed in estimated

variable importance between algorithms. Relative variable

importance in final EENMs for each year broadly echoes the

consensus in variable ranking among GAM, RF and BRT

model sets. Year-specific EENMs conflicted in the ranking of

environmental variable importance. SST, TFreq and Depth

were ascribed greater importance in the 2011/2012 ensemble,

whereas the importance of chl-a dropped from 2009/2010 to

2011/2012. This could be attributable to non-stationary pro-

cesses that govern the responses of grey-headed albatrosses to

oceanographic conditions (Jenouvrier et al., 2005), or indica-

tive of the need for additional environmental data to

enhance the capacity of our models to capture the mecha-

nisms underlying foraging habitat selection.
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Figure 6 Percentage of area accessible during brood-guard phase

(estimated using whole data set maximum displacement from

colony) containing oceanographic conditions suitable for foraging

against EENM-predicted habitat suitability index (HSI). 2009/

2010 EENM (weighted mean) as black line; 2011/2012 in grey.
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Concordance in model response curves per environmental

variable from single-algorithm models increases confidence

in the capacity of these models to detect responses to envi-

ronmental conditions. We observed strong concordance

between model response curves resulting from GAM, RF and

BRT across all environmental variables in both years and so

included these model sets in final EENMs. EENM predictions

integrating outputs of several single-algorithm models pre-

dicting broadly similar responses could be regarded as prefer-

able to any single-model output in terms of confidence in

predictions. Similarly, broadly matching spatial predictions,

such as those predicted by GAM, RF and BRT in our analy-

sis, increase confidence in these single-algorithm model out-

puts and in the spatial predictions of the final EENMs. This

is a key aspect of the utility of the EENM process in enabling

the construction of more reliable predictive habitat-based

models.

Model performance

We observed notable differences in model performance rank-

ings using alternative metrics (i.e. AUC, TSS and Boyce

Index). There is, to our knowledge, no current consensus on

which metric is preferable in this context, although the relia-

bility of AUC has been heavily criticized (Boyce et al., 2002;

Lobo et al., 2008). The TSS is independent of sample size

(prevalence; Allouche et al., 2006), so we chose this metric

over AUC for model selection. We also implemented the

Boyce Index as a comparative measure of model performance

(Boyce et al., 2002; Hirzel et al., 2006). As with all move-

ment data sets, our response variable is strictly presence-only,

and so a presence-only model evaluation metric is likely the

most appropriate. However, we note that the use of multiple

performance metrics in EENM construction and evaluation

is clearly preferable to any single metric (Allouche et al.,

2006; Jim�enez-Valverde, 2012; Thibaud et al., 2014). EENMs

were selected as the best performing models in both years

using the Boyce Index and AUC methods, confirming that

averaging the outputs of several single-algorithm models into

an ensemble improved predictive capacity in our test case.

Our exploration of the utility of EENM in this context

highlights the capacity of the technique for comparing among

the predictions of single-algorithm models and selecting the

best performing models on a case-by-case basis. For example,

taking a conservative approach, we excluded MaxEnt from

final EENMs, improving performance and increasing confi-

dence in predictions. EENM is useful for excluding strong

bias and smoothing over weaker biases in different model pre-

dictions. Our results exemplify the potential of EENM for use

with movement data in identifying predictable foraging habi-

tats for wide-ranging marine vertebrates over broad scales.

EENM extrapolative performance

Ecological niche models constructed and validated over the

same extent can show limited transferability in space and

time (Randin et al., 2006; Torres et al., 2015). While we did

not have sufficient data to investigate transferability through

space, the extrapolative performance of our EENMs across

the two years of this study was good, although the 2011/

2012 ensemble performed considerably better than that

constructed for 2009/2010 (2009/2010, AUC = 0.9107,

TSS = 0.5194, Boyce Index = 0.8536; 2011/2012, AUC =
0.9281, TSS = 0.6630, Boyce Index = 0.9348). Changes in the

performance of ensembles extrapolated across years are

indicative of poor transferability through time, because of

variation in animal–environment interactions or, more prob-

ably, the failure of models to fully capture the drivers of

these interactions.

Further tests of EENM extrapolative performance, for

example to other populations of the same species (e.g. Torres

et al., 2015), or through multiple years in the same region,

are necessary to ascertain true extrapolative capabilities.

Moreover, the multiscale periodicity of oceanographic vari-

ability in the region (e.g. decadal-scale Southern Ocean

Oscillation Index) is likely to influence extrapolative capabil-

ity (e.g. Jenouvrier et al., 2005). Some key questions remain:

for example, After how many years is the extrapolative per-

formance of a year-specific model likely to fade? How do

predictable habitats over short-term time-scales align with

predictable habitats on interannual or decadal time-scales?

Future work should investigate variability in oceanographic

conditions within and among years if these techniques are to

prove useful for predicting population-level responses to cli-

mate-mediated ecosystem change.

Nevertheless, multi-model ensembles can increase confi-

dence in model predictions, where they are implemented

with awareness of technical limitations (Marmion et al.,

2009; Oppel et al., 2012). By better incorporating uncer-

tainty, the output of EENMs provides a robust basis for rec-

ommendations relating to the management of threats to

marine vertebrate populations of conservation concern.
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